- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Larson, Drew_A (2)
-
Abbott, Albert_G (1)
-
Ahmed, Alaa_S (1)
-
Carlson, John_E (1)
-
DeBolt, Seth (1)
-
Fan, Shenghua (1)
-
Hahn, Matthew_W (1)
-
Houston, Allan (1)
-
Islam‐Faridi, Nurul (1)
-
Kapoor, Beant (1)
-
Nelson, C_Dana (1)
-
Schlarbaum, Scott_E (1)
-
Smith, Stephen_A (1)
-
Stanton, Elizabeth_C (1)
-
Staton, Margaret_E (1)
-
Stork, Jozsef (1)
-
Thomas, Austin (1)
-
Vargas, Oscar_M (1)
-
Walker, Joseph_F (1)
-
Zhebentyayeva, Tetyana (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important.We report the first haplotype‐resolved chromosome‐scale genome assembly ofQ. albaand conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data.Despite strongly conserved chromosome synteny and genome size acrossQuercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species – as are the chromosomal locations of R gene clusters – but, gene number within clusters is more labile. We found thatQ. albahas high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus.The white oak genome represents a major new resource for studying genome diversity and evolution inQuercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution inQuercus.more » « less
-
Larson, Drew_A; Walker, Joseph_F; Vargas, Oscar_M; Smith, Stephen_A (, American Journal of Botany)PremiseLarge genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications. MethodsWe used a hierarchical clustering approach, with tree‐based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene‐wise edge‐based analyses, concatenation, and coalescent‐based methods, and is summarized in a consensus framework. ResultsOur consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole‐genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications. ConclusionsWe provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.more » « less
An official website of the United States government
